Sáng kiến kinh nghiệm Hướng dẫn học sinh Lớp 5 giải toán về tỉ số phần trăm
Bạn đang xem 20 trang mẫu của tài liệu "Sáng kiến kinh nghiệm Hướng dẫn học sinh Lớp 5 giải toán về tỉ số phần trăm", để tải tài liệu gốc về máy hãy click vào nút Download ở trên.
Tóm tắt nội dung tài liệu: Sáng kiến kinh nghiệm Hướng dẫn học sinh Lớp 5 giải toán về tỉ số phần trăm
MỤC LỤC Tên đề tài: “Hướng dẫn học sinh lớp 5 giải toán về tỉ số phần trăm”. PHẦN MỞ ĐẦU I. Bối cảnh của đề tài II.Lí do chọn đề tài III. Phạm vi và đối tượng nghiên cứu IV. Mục đích nghiên cứu V. Điểm mới trong kết quả nghiên cứu PHẦN NỘI DUNG I. Cơ sở lí luận II. Thực trạng vấn đề III. Các biện pháp hướng dẫn học sinh lớp 5 giải toán về tỉ số phần trăm IV. Hiệu quả mang lại của sáng kiến V. Khả năng ứng dụng và triển khai VI. Ý nghĩa của sáng kiến PHẦN KẾT LUẬN I. Những bài học kinh nghiệm II. Những kiến nghị, đề xuất - Các kĩ năng phân tích, tổng hợp vẽ sơ đồ, bảng biểu, thiết lập mối quan hệ giữa các dữ kiện có trong bài toán phần trăm hầu như còn hạn chế. - Phương pháp và cách thức giảng dạy của giáo viên còn mang nhiều tính áp đặt, chưa phát huy được khả năng của học sinh. Xuất phát từ những lý do trên, tôi đã tiến hành nghiên cứu, tìm tòi qua các tài liệu, trao đổi với các bạn đồng nghiệp để hệ thống và viết bản kinh nghiệm “Hướng dẫn học sinh lớp 5 giải toán về tỉ số phần trăm”,với mục đích hướng dẫn cho các em học sinh lớp 5 có thể giải các dạng toán này một cách dễ dàng và khoa học nhất. III. Phạm vivà đối tượngnghiên cứu 1. Phạm vi Áp dụng tại đơn vị tôi đang công tác nội dung giải toán về tỉ số phần trăm trong chương trình môn Toán lớp 5 2.Đối tượng Phương pháp dạy học giải toán về tỉ số phần trăm ở lớp 5. IV. Mục đíchnghiên cứu Đưa ra các biện pháp hướng dẫn, rèn luyện kĩ năng giải toán về tỉ số phần trăm cho học sinh lớp 5, góp phần nâng cao chất lượng dạy học môn toán, phát huy được tính tích cực, chủ động, sáng tạo của học sinh trong học tập môn Toán ở nhà trường Tiểu học V. Những đóng góp mới của đề tài Phân tích được những nguyên nhân dẫn đến sai lầm, khó khăn thường gặp khi giải toán về tỉ số phần trăm. Từ đó, đưa ra được các biện pháp khắc phục nhằm hướng dẫn học sinh giải toán phù hợp, đạt hiệu quả cao. Thông qua đó còn giúp các em củng cố các kiến thức số học khác không chỉ củng cố các kiến thức toán học có liên quan mà còn giúp học sinh gắn học với hành, gắn nhà trường với thực tế cuộc sống lao động. Qua việc học các bài toán về Tỉ số phần trăm học sinh có hiểu biết về thực tế, vận dụng được vào việc tính toán trong thực tế. Qua thực tế giảng dạy nhiều năm ở lớp 5 mảng kiến giải toán về tỉ số phần trăm, tôi thấy trong qúa trình dạy học sinh còn hay mắc phải một số tồn tại cơ bản sau đây: - Rất nhiều học sinh chưa hiểu được bản chất của tỉ số phần trăm, dẫn đến việc lựa chọn phép tính, ghi tỉ số phần trăm tùy tiện, sai ý nghĩa toán học. - Việc sử dụng các sơ đồ, các hình vẽ minh hoạ cho mỗi dạng toán về tỉ số phần trăm có tác dụng rất tốt trong việc hướng dẫn học sinh tìm cách giải cho bài toán đó nhưng giáo viên chưa khai thác hết thế mạnh của nó - Việc nắm bắt các kiến thức cơ bản về tỉ số phần trăm của các em còn chưa sâu. Đôi khi còn hay lẫn lộn một cách đáng tiếc. Chưa phân biệt được sự khác nhau cơ bản giữa tỉ số và tỉ số phần trăm, trong qúa trình thực hiện phép tính còn hay ngộ nhận. - Việc vận dụng các kiến thức cơ bản vào thực hành còn gặp nhiều hạn chế, các em hay bắt chước các bài giáo viên hướng dẫn mẫu để thực hiện yêu cầu của bài sau nên dẫn đến nhiều sai lầm cơ bản. Cụ thể như sau: + Khi thực hiện phép tính tìm tỉ số phần trăm của hai số, học sinh còn lẫn lộn giữa đại lượng đem ra so sánh và đại lượng chọn làm đơn vị so sánh (đơn vị gốc, hay đơn vị chuẩn) dẫn đến kết quả tìm ra là sai. Ví dụ: ( Bài: Tỉ số phần trăm,trang 73 sách Toán 5 ) Diện tích một vườn hoa là 100m 2, trong đó có 25m2 trồng hoa hồng.Tìm tỉ số của diện tích trồng hoa hồng và diện tích vườn hoa. * Phép tính đúng: 25 : 100 ( 100 là đơn vị so sánh, 25 là đối tượng đem ra so sánh). * Phép tính sai: 100 : 25 (25 là đơn vị so sánh, 100 là đối tượng đem ra so sánh). + Rất nhiều học sinh chưa hiểu được bản chất của tỉ số phần trăm, dẫn đến việc lựa chọn phép tính, ghi tỉ số phần trăm bừa bãi, sai ý nghĩa toán học. Ví dụ: ( Bài: Giải toán về tỉ số phần trăm,trang 76 sách Toán 5 ) Mộttrường tiểu học có 800 học sinh, trong đó số học sinh nữ chiếm 52,5%. Tính số học sinh nữ của trường đó. * Cách giải đúng: 1% số học sinhtoàn trường là: 800 : 100 = 8 ( học sinh) Số học sinh nữ là: 8 x 52,5 = 420 ( học sinh) * Cách giải sai: 1% số học sinhtoàn trường là: 800 : 100% = 8 ( học sinh) Số học sinh nữ là : 8 x 52,5% = 420 ( học sinh) Tính tỉ số phần trăm của hai số 19 và 30. *Cách giải đúng: 19 : 30 = 0,63333 = 63,33 % * Cách giải sai: 19 : 30 = 0,63333 = 6,3 % + Khi giải một số bài toán phần trăm về tính tiền lãi, tiền vốn học sinh còn ngộ nhận và cho rằng tiền lãi và tiền bán có quan hệ tỉ lệ với nhau, dẫn đến giải sai bài toán. Ví dụ: ( Bài tập trong sách tham khảo 500 Bài toán lớp 5) Mộtngười đem bán một quyển sách với giá 50.000 đồng và được lãi 15% tiền vốn. Hỏi muốn tiền lãi bằng 30% tiền vốn thìngườiđó phải bán quyển sách đóvới giá bao nhiêu? *Ở bài toán này các em thường hiểu sai và dẫn đến cách giải sai như sau: 30% tiền vốn so với 15% tiền vốn thì gấp số lần là: 30% : 15% = 2( lần) Để tiền lãi bằng 30% tiền vốn thìngườiđó cần bán quyển sáchvới giá là: 50.000 x 2 = 100.000(đồng) + Khi giải các bài toán về phần trăm học sinh còn hay hiểu sai ý nghĩa tên đơn vị của các tỉ số phần trăm nên dẫn đến việc thiết lập và thực hiện các phép tính bị sai. Ví dụ: ( Bài tâp trong sách tham khảo 500 Bài toán lớp 5) Số cây lớp 5A góp được bằng 25% số cây lớp 5B, sau đólớp 5A cho lớp 5B 5 cây nên số cây của lớp 5A bằng 20% số cây lớp 5B. Tìm số cây của lớp 5B ban đầu? * Khi giải bài toán trên học sinh đó sai lầm khi thiết lập phép tính trừ hai tỉ số phần trăm không cùng loại như sau: 5 cây ứng với số phần trăm là: 25% - 20% = 5%( số cây lớp 5B ban đầu) Số cây ban đầu của lớp 5B là: 5 : 5 x 100 = 100( cây) ( Trong phép trừtrên thì 25% có đơn vị là số cây của lớp 5B lúc đầu, còn 20% có đơn vị là số cây của lớp 5B lúc sau nên ta không thể thực hiện được phép trừ 25% - 20% = 5%( số cây của lớp 5B ban đầu) Để nắm được thực trạng của vấn đề này, sau khi dạy xong mảng kiến thức về tỉ số phần trăm của năm học 2017- 2018, ở trườngtôi đang công tác, tôi đãtiến hành khảo sát về mảng kiến thức giải toán về tỉ số phần trăm với đề ra như sau. ĐỀ KHẢO SÁTMÔNTOÁN LỚP 5 ( Thời gian 40 phút) Bài 1:Tìm tỉ số phần trăm của: a. 37 và 42; b. 109,98 và 42,3 7 b. Tìm của 35kg 5 Bài 3: Tìm một số biết: 7 3 2 a. của nó bằng 35 b. của nó bằng 5 4 3 - Đối với bài tập 1 sau khi học sinh đã hoàn thiện tôi đãcủng cố thêm để học sinh nêu tỉ số của số cây bạch đàn và cây xoan để học sinh có sự tư duy về chiều sâu từ đó mà hiểu bản chất về tỉ số. - Đối với bài toán 2 và 3 sau khi học sinh làm, tôi đã lưu ý học sinh “tìm phân số của một phân số cũng giống như cách tìm phân số của một số tự nhiên”; “tìm một số khi biết phân số của nó là một phân số cũng giống như cách tìm một số khi biết phân số của nó là số tự nhiên” cả hai dạng bài này đều hướng học sinh làm dưới dạng hai cách khác nhau. Bài 2a: 1 Tìm 2 của m2. 3 2 2 1 1 2 1 Cách 1: của m2 là : (m2) 3 2 2 3 3 2 1 1 1 Cách 2: của m2 là : :3 2 = (m2) 3 2 2 3 3 2 Bài 3b: Tìm một số biết : của nó bằng . 4 3 2 3 8 Cách 1: Số đó là: : = 3 4 9 2 8 Cách 2: Số đó là: :3 4 3 9 Để giúp các em nắm chắc các dạng cơ bản sau khi học sinh đã hoàn chỉnh các dạng toán trên.Tôi đã yêu cầu học sinh đặt đề bài tương tự, việc các em ra được đề bài tương tự chứng tỏ các em đã hiểu được bản chất của bài toán.Có rất nhiều dạng các bài toán về tỉ số phần trăm, qua thực tế giảng dạy và nghiên cứu nhiều năm ở tiểu học, tôi đã hệ thống các dạng bài và phương pháp hướng dẫn giải cụ thể như sau: 2.Hướng dẫn học sinh giải 3 dạng toán cơ bản về tỉ số phần trăm Trong chương trình môn toán lớp 5 có 3 dạng toán cơ bản về tỉ số phần trăm như sau: Bài toán về tìm tỉ số phần trăm của hai số; Bài toán tìm giá trị một số phần trăm của một số đã biết; Bài toán tìm một số khi biết giá trị phần trăm của số đó. 2.1.Dạng 1: Bài toán về tìm tỉ số phần trăm của 2 số: a..Các bước cơ bản về phương pháp giải: với hai cách giải đặc trưng tương đương với hai cách ghi phép tính trong sách giáo khoa Toán 5. a..Các bước cơ bản về phương pháp giải: - Học sinh biết cách tìm C % của một số Yđã biết bằng mộttrong hai cách sau đây: Lấy Y : 100 x C hoặc lấy Y x C : 100 - Biết vận dụng cách tính trên vào giải các bài toán về phần trăm. Biết giải các bài toán có sự phối hợp giữa tìm tỉ số phần trăm của hai số và tìm giátrị một số phần trăm của một số. b. Ví dụ Bài toán 1: ( Bài tập 4 trang 178 sách toán 5 ) Mộtthư viện có 6000 quyển sách. Cứ sau mỗi năm số sách của thư viện lại được tăng thêm 20% (so với số sách của năm trước). Hỏi sau hai năm thư viện cótất cả bao nhiêu quyển sách? Nhầm lẫn cơ bản của học sinh khi giải bài tập trên là các em đi tính số sách tăng sau một năm, sau đó nhân với 2 để tìm số sách tăng sau hai năm, rồi lấy số sách ban đầu cộngvới số sách tăng sau hai năm để tìm đáp số. Nguyên nhân chủ yếu là do các em chưa hiểu rõ mối quan hệ về phần trăm giữa số sách của các năm với nhau. *Hướng dẫn giải a) Hiểu tỉ số 20% như thế nào? Số sách tăng sau một năm 20 = = 20 % Số sách năm 100 b)Lập sơ đồ giải: 6000 quyển Sau 2 năm Có số Sau 1 năm có số quyển quyển? *Cách giải: Cách 1 Bài giải Coi số sách ban đầu là 100 phần bằng nhau 20% số sách ban đầu là: 6000 : 100 x 20 = 1200( quyển) Số sách của thư viện sau 1 năm là: 6000 + 1200 = 7200( quyển) 20% số sách của thư viện sau 1 năm là: *Bài toán 1:( Bài tập 2 trang 78 sách Toán 5 ) Số học sinh khá giỏi của trường Vạn Thịnh là 552 em,chiếm 92% số học sinh toàn trường. Hỏitrường Vạn Thịnh có bao nhiêu học sinh? Nhầm lẫn học sinh hay gặp trong bài toán này là các em xác định sai tỉ số phần trăm ứng với 552 học sinh. Hoặc không xác định được 552 học sinh ứng với tỉ số phần trăm nào. *Phân tích: + Hiểu tỉ số 92% như thế nào? Số HS khágiỏi 92 = = 92% Số HS cả trường 100 Cách giải: Bài giải Coi số học sinhtoàn trường là 100 phần bằng nhau (hay 100%) thì số học sinh khá giỏi là 92 phần như thế(hay 92%). Như vậy: 552 em ứng với 92 phần hoặc 552 em ứng với 92%. Vậy 100 phần .em? ứng với100% Giá trị 1 phần hay 1% số học sinh toàn trường là: 552 : 92 = 6(em) Số học sinh toàn trường là : 6 x 100 = 600(em) Đáp số: 600 em Như vậy đối với những bài toán dạng này ta cóthể cho các em quy về số phần bằng nhau, hoặc các em cóthể giải bài toán với các tỉ số phần trăm. c.Một số lưu ý: - Khi giải các bài toán dạng 3 này học sinh rất hay bị nhầm lẫn với các bài toán dạng 2 nên trong quátrình giảng dạy giáo viên cần cho học sinh nắm chắc và sử dụng thành thạo cách tìm một số khi biếtmột giátrị phần trăm của số đó. Cho học sinh phân biệt sự khác nhau của hai dạng bài này. - Khi giải các bài toán về tính tiền lãi,tiền vốn, giáo viên cần cho học sinh hiểu rõ: Tiền lãi = Tiền bán - Tiền vốn (nếu bán có lãi) Tiền lỗ = Tiền vốn - Tiền bán (nếu bán bị lỗ) - Cóthể sử dụng các sơ đồ hay các mô hình để phân tích nhằm giúp học sinh tự phát hiện ra đường lối để giải bài toán, tránh những sai sót không đáng có.
File đính kèm:
- sang_kien_kinh_nghiem_huong_dan_hoc_sinh_lop_5_giai_toan_ve.docx